学报首页    
学报动态        
· 重要声明:长春理工大学学报投稿邮箱为custlxb@cust.edu.cn
更多>>
投稿指南        
相关下载        
· 文章模板
· 版面费办理办法
· 保密审查表
更多>>
友情链接        
· 长春理工大学
· 长春理工大学图书馆
· 中国知网
当前位置:首页»自然学科» 当期目录

基于机器视觉的微小零件形貌检测方法

发布日期:2015-05-14| 阅读次数: | 关键字:38-4 | 作者:段雨晗,付跃刚 | 来源:长春理工大学学报:自然科学版 2015 Vol.38(4): 022-027

基于机器视觉的微小零件形貌检测方法

段雨晗,付跃刚

(长春理工大学光电工程学院,长春130022

摘要:针对当前工业生产中人工对微小异形零件形貌参数测量精度低、速度慢的问题,提出了一种基于机器视觉的检测方法,并开发了一款基于开源计算机视觉库OpenCV 的检测软件。该检测方法首先使用CMOS 相机采集被测零件的图像,并结合频谱特征对其进行滤波、阈值分割等预处理;然后选取效率高、边缘跨度为单像素的Canny 边缘检测算法对预处理之后的图像进行边缘检测;最后采用Ramer 算法对零件轮廓进行递归细分,拟合出几何基元,并结合测量焦距下的系统标定系数计算出零件实际的形貌参数。实验结果表明:通过该检测方法对长、宽均为毫米量级的Ω型微小零件进行形貌检测,检测精度达到10μm 以下,具有精度高、速度快的优点,可为工业化生产提供可靠依据。

关键词:机器视觉;形貌检测;Ramer算法;OpenCV

中图分类号: TP391 文献标识码:A 文章编号:1672-9870201504-0022-06

 

Shape Parameter of Micro Part Detection Method

Based on Machine Vision

DUAN YuhanFU Yuegang

School of Optoelectronic EngineeringChangchun University of Science and TechnologyChangchun 130022

AbstractAiming at the faults of low precision and slow speed in the manual measurement of tiny special-shaped component’s shape parameters in current industrial productiona detecting method based on machine vision was proposed and a detecting software founded on open-source computer vision library OpenCV was programmed. Firstlythe object was imaged with a CMOS sensor and preprocessed with filtering and threshold by the use of spectrum analysis method. And then Canny edge detecting algorithm which is successful in extracting the edges with pixel precision and high efficiency was chosen to detect the edge of preprocessed image. In the endby adopting the Ramer algorithm which performs a recursive subdivision of the contour to fit geometric primitives and using system calibration coefficient the shape parameters of the measured part were obtained. The experimental result shows that through the proposed detection methodthe shape parameters of a micro component in the shape of Ωthe length and width of which were in millimeter level which can be acquired. And the detecting precision can reach to a level of 10μm. The method has the advantages of high precision and fast speed which can provide a reliable basis for industrialized production.

Key wordsmachine visionshape detectionramer algorithmOpenCV

 

基金项目:吉林省科技发展计划项目(20126016

作者简介:段雨晗(1994-),女,本科,E-mail1367991415@qq.com

通讯作者:付跃刚(1972-),男,博士,教授,E-mailfuyg@cust.edu.cn

版权所有:长春理工大学学报编辑部
Copyright ©Changchun University of Science and Technology