学报首页    
学报动态        
· 重要声明:长春理工大学学报投稿邮箱为custlxb@cust.edu.cn
更多>>
投稿指南        
相关下载        
· 文章模板
· 版面费办理办法
· 保密审查表
更多>>
友情链接        
· 长春理工大学
· 长春理工大学图书馆
· 中国知网
当前位置:首页»自然学科» 当期目录

DDAG支持向量机在ERT系统流型识别中的应用

发布日期:2014-07-08| 阅读次数: | 关键字:38-4 | 作者:张华 | 来源:长春理工大学学报:自然科学版 2015 Vol.38(4): 159-162

DDAG支持向量机在ERT系统流型识别中的应用

张华

(吉林建筑大学城建学院,长春130011

摘要:针对两相流体流动特性复杂、流型识别准确率低等问题,提出一种能够提高两相流流型识别率的方法。首先采用小波包分析对ERT 系统测量的压差波动信号进行特征提取;然后通过计算类间不可分离程度为每个节点选取最易分的两类构造DDAG 支持向量机多类分模型;最后将特征数据输入分类模型进行流型识别。通过实验对比,四种流型识别的准确率要明显高于其它常用方法的流型识别。结果表明,小波包分析和DDAG 支持向量机多类分类算法较大提高了油/水两相流流型识别的精度,是一种有效的流型识别方法。

关键词:电阻层析成像;流型识别;小波包;DDAG 支持向量机

中图分类号: TP391.4 文献标识码:A 文章编号:1672-9870201504-0159-04

 

Application of DDAG Support Vector Machine in Flow Regime

Identification for Electrical Resistance Tomography System

ZHANG Hua

The City College of Jilin Jianzhu UniversityChangchun 130011

AbstractAccording to the fact that two-phase fluid has complex flow characteristicand the accuracy of flow regime is low. In this papera method of improving recognizing rate of flow regime is presented. Firstlywavelet packet analysis is adopted to extract the feature of the differential pressure fluctuation signal which is measured by electrical resistance tomography systemthen the improved DDAGSVM muliticlass model is structured according to computing the inter- class separability which can distinguish two class easily for each mode. Finally the extracted feature data is taken as input information of the multi-class support vector machine of improved DDAGso the four kinds of two-phase flow regime can be identified. Through experiment comparingthe accuracy rate of flow regime identification in this paper  is higher than other method. Results show that the precision of two-phase flow regime identification is improved by the method of the wavelet packet analysis and DDAG support vector machine. It is an effective method of regime identification.

Key wordselectrical resistance tomographyflow regime identificationwavelet packetdecision directed acyclic graph support vector machine

 

作者简介:张华(1980-),女,硕士,讲师,E-mail391022756@qq.com

 

版权所有:长春理工大学学报编辑部
Copyright ©Changchun University of Science and Technology